

Massively Parallel Algorithms Classification & Prediction Using Random Forests

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

Classification Problem Statement

- Given a set of points $\mathcal{L} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^d$ and for each such point a label $y_i \in \{l_1, l_2, \dots, l_n\}$
 - Each label represents a class, all points with the same label are in the same class
- Wanted: a method to decide for a not-yet-seen point x which label it most probably has, i.e., a method to predict class labels
 - We say that we learn a classifier C from the training set \mathcal{L} :

$$C: \mathbb{R}^d \to \{l_1, l_2, \ldots, l_n\}$$

Typical applications:

Bremen

U

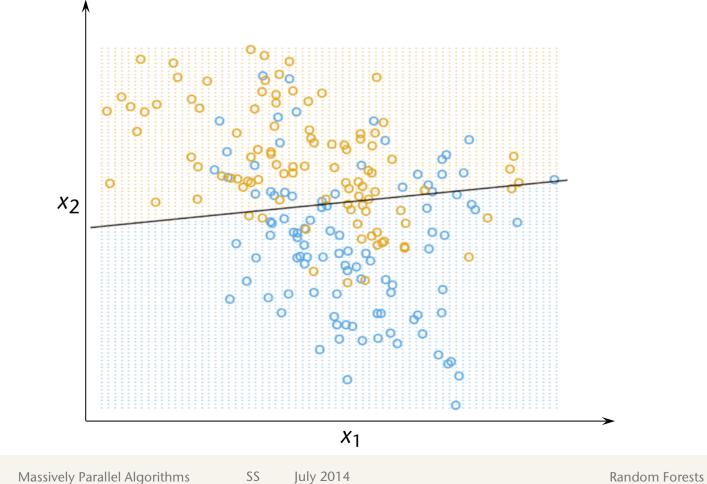
- Computer vision (object recognition, ...)
- Credit approval
- Medical diagnosis
- Treatment effectiveness analysis

Ulcer/tumor or not?

G. Zachmann

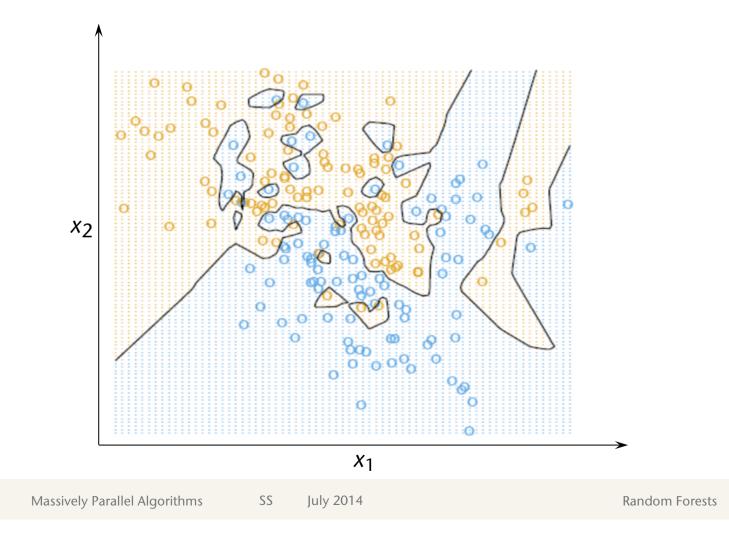
One Possible Solution: Linear Regression

- Assume we have only two classes (e.g., "blue" and "yellow")
- Fit a plane through the data



- For the query point **x**, find the nearest neighbor $\mathbf{x}^* \in {\mathbf{x}_1, \ldots, \mathbf{x}_n} \in \mathbb{R}^d$
- Assign the class l^* to **x**

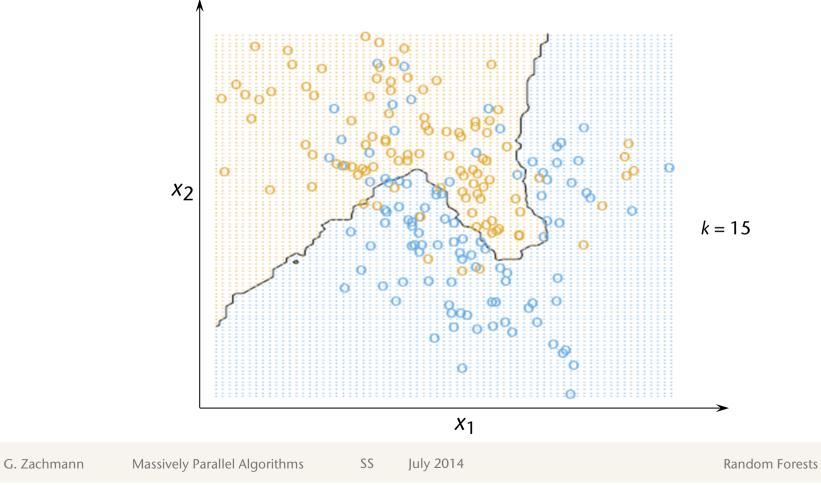
G. Zachmann



4

Improvement: *k*-NN Classification

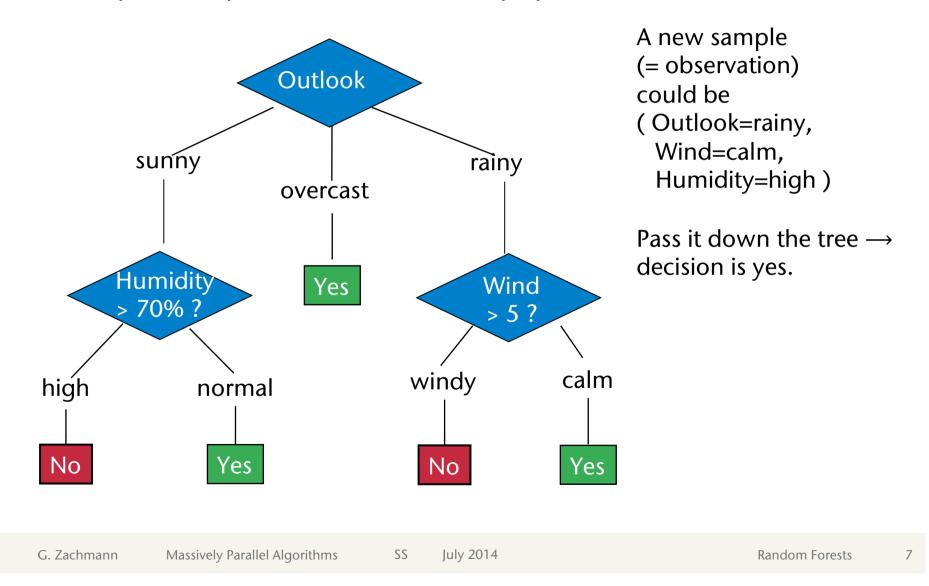
- Instead of the 1 nearest neighbor, find the k nearest neighbors of
 x, {x_{i1},..., x_{ik}} ⊂ L
- Assign the majority of the labels $\{l_{i_1}, \ldots, l_{i_k}\}$ to **x**



W

- The coordinates/components x_{i,j} of the points x_i have special names: independent variables, predictor variables, features, ...
 - Specific name of the x_{i,j} depends on the domain / community
- The space where the \mathbf{x}_i live (i.e., \mathbb{R}^d) is called feature space
- The labels y_i are also called target, dependent variable, response variable, ...
- The set \mathcal{L} is called the training set / learning set (will become clear later)

Simple example: decide whether to play tennis or not



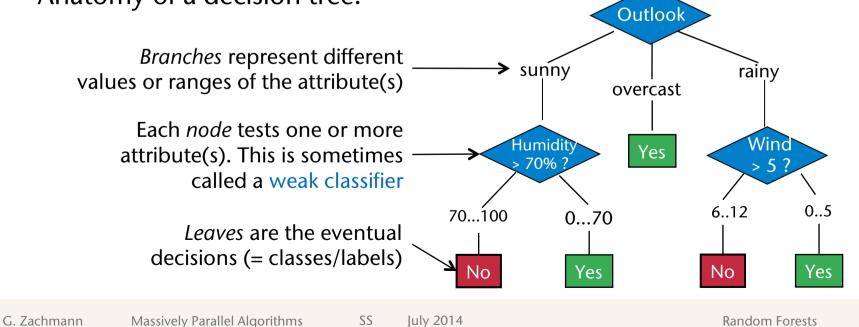
- The feature space = "all" weather conditions
 - Based on the attributes

outlook \in { sunny, overcast, rainy },

humidity \in [0,100] percent,

wind \in {0, 1, ..., 12} Beaufort

- Here, our feature space is mixed continuous/discrete
- Anatomy of a decision tree:



Another Example

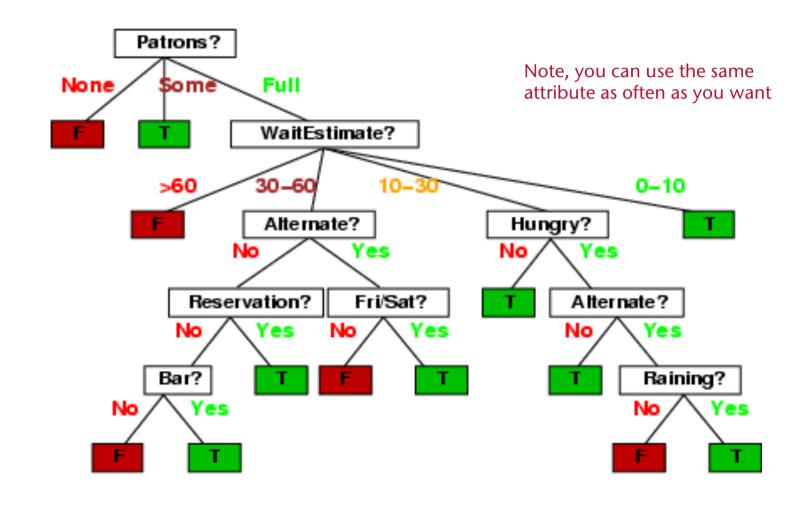
- "Please wait to be seated" ...
- Decide: wait or go some place else?
- Variables that could influence your decision:
 - Alternate: is there an alternative restaurant nearby?
 - Bar: is there a comfortable bar area to wait in?
 - Fri/Sat: is today Friday or Saturday?
 - Hungry: are we hungry?
 - Patrons: number of people in the restaurant (None, Some, Full)
 - Price: price range (\$, \$\$, \$\$\$)
 - Raining: is it raining outside?
 - Reservation: have we made a reservation?
 - Type: kind of restaurant (French, Italian, Thai, Burger)
 - WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

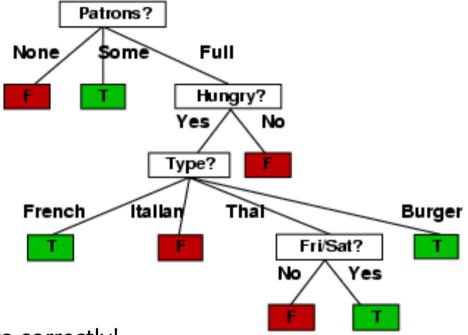
• You collect data to base your decisions on:

 Feature space: 10-dimensional, 6 Boolean attributes, 3 discrete attributes, one continuous attribute

• A decision tree that classifies all "training data" correctly:



A better decision tree:



- Also classifies all training data correctly!
- Decisions can be made faster
- Questions:
 - How to construct (optimal) decision trees methodically?
 - How well does it generalize? (what is its generalization error?)

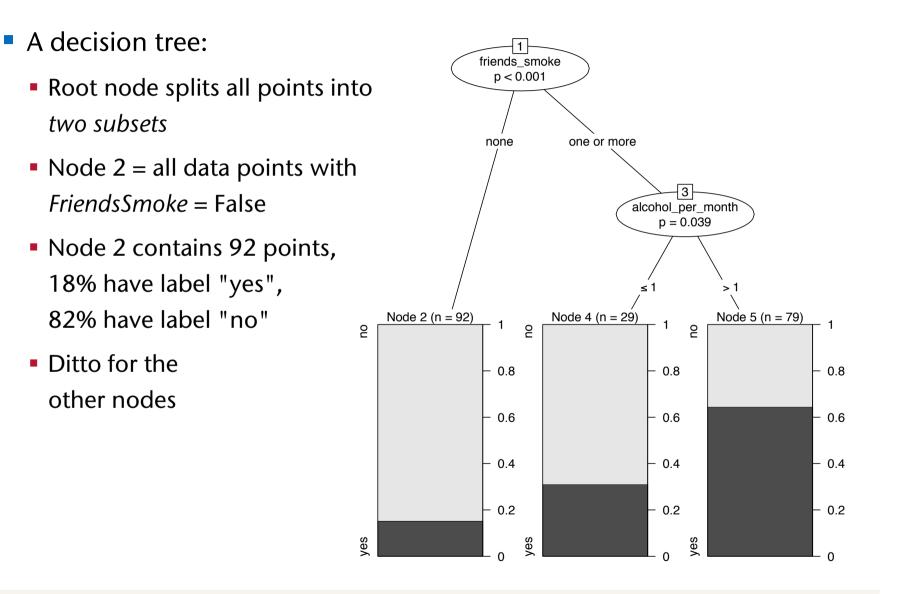
Construction (= Learning) of Decision Trees

- By way of the following example
- Goal: predict adolescents' intention to smoke within next year
 - Binary response variable IntentionToSmoke
- Four predictor variables (= attributes):
 - LiedToParents (bool) = subject has ever lied to parents about doing something they would not approve of
 - FriendsSmoke (bool) = one or more of the 4 best friends smoke
 - Age (int) = subject's current age
 - AlcoholPerMonth (int) = # times subject drank alcohol during past month
- Training data:

Bremen

U

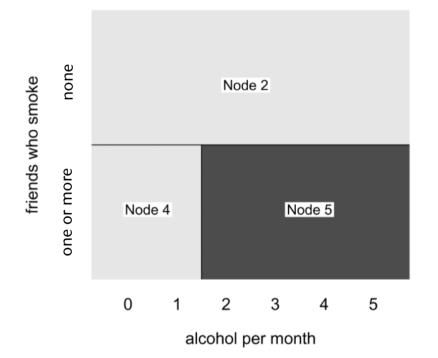
- Kitsantas et al.: Using classification trees to profile adolescent smoking behaviors. 2007
- 200 adolescents surveyed

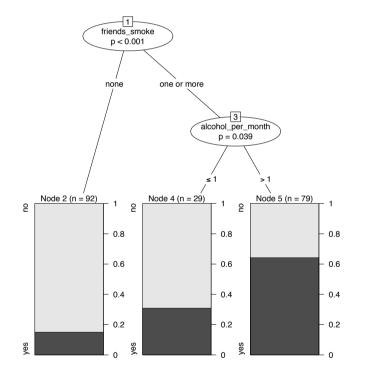


July 2014

SS

 Observation: a decision tree partitions feature space into rectangular regions:

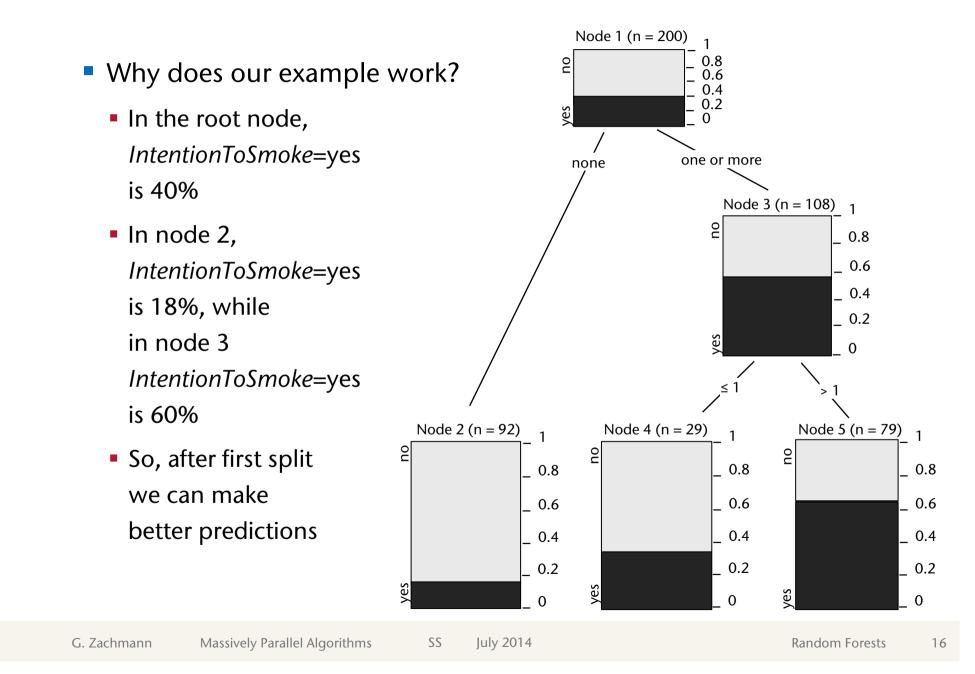




Selection of Splitting Variable and Cutpoint

Bremen

W



- Ideally, a good attribute (and cutpoint) splits the samples into subsets that are "all positive" or "all negative"
- Example (restaurant):

W

